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Finite Element Methods

8.1 INTRODUCTION

The finite difference methods described in previous chapters can be con-
sidered as a direct discretization of differential equations. In finite element
methods we generate difference equations by using app.oximate methods
with the piecewise polynomial solution. The details of this formulation will
be discussed, including a brief description of the weighted residual and the
variational methods. We also discuss the construction of the piecewise poly-
nomial functions in one, two and three space dimensions. Finally we study
the application of the finite element methods to the solution of ordinary
and partial differential equations. '

8.2 WEIGHTED RESIDUAL METHODS

The weighted residual methods are the approximate methods which pro-
vide analytical procedure for obtaining solutions in the form of functions
which are close in some sense to the exact solution of the boundary value
problem or the initial value problem. We formulate the weighted residual
methods for the boundary value problem

Llu]=r(x), xER 8.1

Uplul =7, XEIR . - (8.2)

where L[u] denotes a general differential operator involving spatial deriva-
tives of u; Uylu] represents the appropriate number of boundary conditions

and Q is the domain with boundary dR. The coordinate x is assumed as a
one dimensional coordinate in the following section, although the definition

of x may be extended and interpreted as a coordinate in multidimensional -

space. The solution of the boundary value problem (8.1)-(8.2) is often attem-
pted by assuming an approximation to the solution u(x), an expression of
the form ' '

u(x) = w(x, a1, a2, -+, GN) (8.3)
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The size of one or more subdomains decreases as N is increased, with the
result that the differential equation is satisfied on the average in smaller
and smaller subdomains, and hopefully the residue approaches zero every-
where.

8.2.3 Galerkin method |
In the Galerkin method the weighting function is chosen to be
Iw(x, a)

Wi= daj

, J=1,2,.... N (8.15)

where w(x, a) is the approximate solution of the problem. Equations (8.8)
in the Galerkin method become

i Ji(x)E(x, a) dx=0, j=1,2,..., N (81.6)

8.2.4 Moment method
In this method, we take the weighting function

Wi=Px) (8.17)
where Pj(x) are polynomials. Equations (8.8) become '
j PAX)E(x, ) dx=0, j=1,2, ..., N (8.18)

R
The method of moments is similar to the Galerkin method except that the
residual is made orthogonal to members of a system of functions which need
not be the same as the approximating function. In practice, we take W;=x/,
and get better results if we orthogonalize them before use.

8.2.5 Collocation method A o
We choose N points X1, X2, ..., X~ in the domain R and define the weigh-
ting function as
W, =8(x — x;) (8.19)

where 8 represents the unit impulse or Dirac delta which vanishes everywhere
except at x = x;. The collocation equations become

g! 8(x—x;)E[x, a]l dx=0 (8.20)

which can be written as
E[xja a]=09 j= 1,2, tey N (821)
This criterion is thus equivalent to putting E[x, a] equal to zero at N points

in the domain R. The distribution of the collocation points on R is arbit-
rary. However, in practice-we distribute the collocation points uniformly

on R.
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Example 8.1 Consider the boundary value problem
w+(1+xHu+1=0
u(£1)=0
Determine the coefficients of the approximate solution
w(x) = ai(1 = x2)+a2x*(1 - x)
by using various weighted residual methods.
Substituting the approximate solution in the differential equation, we get
Elx, a]=1+ai(—=1-x%+a22 - 11x2 - x5)
Since the approximate solution satisfies the condition of symmetry, we con-
sider the boundary value problem in the interval [0, 1].
" Least square method
Equation (8.11) becomes

_68 7096 63404 , 12 _2_6_
=75 1155 aiax+ ai az+ 1

WE 4005927 57 o1

2
ay +

which leads to the linear equations
68 3548 6
2—5‘01 + m‘ a= '?
s, 6,38
1155 4095 21
On solving them, we find
a1=0.932718, az2= —0.068181

Partition method
We divide the interval [0, 1] into two subintervals [0, 1/2] and [1/2, 1].
Equations (8.14) give

81 1453 1
160%' ~ 268822
11, 6317 1
-1?0-a1+ma2—7

Solving these equations, we find
a1=0.923680, az= —0.059914

Galerkin method
Equations (8.16) become

1
I(l—xz)[1+a|(-—l—x‘)+az(2—llxz—x‘)l dx=0

j x2=xM1+a(—1-x)+ax2-11x2=x6)] dx=0

0
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which on simplification may be written as

[‘ 10120196 _ 890871744 7 T O[_634
45045 2837835 S A T
_ 890871744 16231424 " ‘L 608
2837835 36855 ] 63
We obtain

u0=0.932718, u1=0.686755
Example 8.3 Consider the initial boundary value problem
au_u
ot 0Ox?
12
2
u(-1,)=u(l,)=0 )
Use the Galerkin method with the approximate solution of the form

u(x, 0)=cos -1<x<1

w(x, £)=(1-x2)(1 - 4x>uo(t) + —136-(x2 = xHui(t)

where uo(¢) and ui(¢) are the unknown solution values at the nodes 0 and
1/2 respectively, to reduce the partial differential equation to a simultaneous
set of two ordinary differential equation.
The Galerkin equations (8.16) become
1

j NT(N(x)(t) ~ N(x)$] dx =0

0

or
M NoNo NoNi [ o NoNo NoNi 1T to
'{ - dx=0
L MiNg NiN{ us NiNy, NiM 0
where
N=[No Nil, ¢=[uo wl”
No(x)= (1= 552+ 4xk), Ni(x) = 139(x=— )
M dug duy T v d2N, dle]
""[I 7:’] and N—[dx’ ax?
Simplifying we get the following ordinary differential equations
104 18 V[, ] [_60 28,
315 945 0 105 315
128 2048 |1 2368 11264

T 945 2835 “ 315 945 “u
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which may be written as

$=A¢
where
-177 208
A= 1467
12) 221 -
6 159
The initial conditions are given by
u(0)=1, w(0)=—==
0(0) 1(0) = \/ 5
Example 8.4 Consider the boundary value problem
‘ pu=-1, |x|<1, |yl<I1
u=0, |x|=1, [y]|=1

521

Use the Galerkin method to determine the solution values at the nodes

0,0, 4, 0)and (1, 3).

It may be noted that the solution of the boundary value problem satisfies

the symmetry conditions

u(-x, y)=u(x, y), u(x, =y)=u(x, y)

u(y, x)=u(x, y)

Thus, there are three mesh points 0, 1 and 2 as shown in Figure 8.1

yli
(0,1)

1 0.3 12 4.
~ 4r4 ﬁr_i_i_

) S »4i

it N
T

Fig. 8.1 Mesh points

(1,0)
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also satisfy the equations (8.35 ii) and (8.35iii) and are called natural or sup-
- pressible boundary conditions.
Finally, we consider the integral

‘ ou Odu )
= F s U, dxd 8.36
[ 7wtz 5)drer (8.3
R
over the area R enclosed by the curve 39% The equation (8.31) becomes
87 = “(aF Su+ aap s+ su,) dx dy (8.37)
-(R X
u du
where Us=g- and u,= 7},—

To simplify (8.37) further we make use of the following theorem,

THEOREM (Green) 8.1 Let R be a closed finite region of the (x, ) plane
bounded by a piecewise smooth curve dR without double point. If the
functions P and Q are continuous with continuous first partial derivatives in

R then
J (P dx+0 dy)= [ j (aQ 9P ) dx dy (8.38)

oF
Ouyx

ap oF
J.( Py Sudx++— e Su dy)

[ ( aux) oay (3“ 25,)] dx dy

JF
(Sux e +8u,,‘9 )dxdy

-
J
d ( OF d{ oF
[ (5 )+ (i Jow ax 0
KR
The equation (8.37) becomes

oF & [OF oF
e =)o
R

+f( OF - dx+ a@F dy)8u=0 (8.39)
oR
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This is satisfied if the following conditions hold,

o -

0 F i(ap) a(ap )=0

%u " 0x\ux ) " o\ 7y,

. oF oF .

(i) J’(— . dx+ %dy) Su=0 (8.40)
oR

The equation (8.40 i) is the Euler equation. If 4 is prescribed on OQ je.
8u =0 then the €quation (8.40 ii) is satisfied otherwise when y is not specified
on dR, we have ‘

- —g—:; cos v+ a&: sin v =0 (8.41)

where v is the angle which the outward normal to the boundary R makes
with the x axis.

8.3.1 Ritz method :

In order to solve a given boundary valye problem by the Rizz method, we
try to write the differential equation as the Euler €quation of some variational
problem. This will give the appropriate expression for J[u]. We now reduce
this variationa] problem to a simple minimizing problem by assuming an
approximate function in the.form (8.5), Substituting (8.5) in (8.22), we get
JIw] as a function of the unknowns q;, a. ..., an. For minimizing JIw], we
have

b
olwl _ [{or  oF .
W— (—a;,tﬁ,-+%¢/)dx—0,]—l,2, ---,N (842)

a
which gives ¥ equations in N unknowns, If ¥;(x) possess continuous second
order derivatives, then integrating by parts the first term in the integrand of
(8.42) we get '

b

d (OF\ oF :
f'/‘j[—Z(%')ﬁ-a\w] dx=0,j=1, 2,..,N (8.43)

Equations (8.43) are identical with the Galerkin equations (8.16) for differ-
ential equations, which are identical with the Euler equation (8.28). For the
differential equation

- dix( pu')+qu=r(x) (8.49)

with boundary conditions (8.23), it can be easily verified that with
F=pu'?+gy2— 2py
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the end points x; and Xiy1 such that the length of the element (e) is unit may
be written as :
X=X+ (xip1— x;)€
=(1=8Exi+€xin » (8.49)
From (8.49) and (8.47), we get

) =Y N

Xi+l — X;
and
(i) 1—¢= 242X _ v (8.50)

Xivrl =X

The transformation (8.49) transforms or maps an element (c) along the
X-axis into a standard interval [0, 1]. Similarly, if we choose the mid-point of
the element (¢) as the origin of the £-axis then the transformation

1 | S
_\'=—2~(,\’;+.\'i+l)+ —2—/(")4' (8.51)

maps the subinterval [x;, Xiy1] into a standard interval [-1, 1], where
V= x;,1— x; is the length of the element (¢).

The functions ¢ and (1-¢) in (8.50) are ratios of lengths and are called
length, local or natural coordinares. We denote (1-¢)and ¢ by L; and L;,
respectively. The coordinates Li(x) and Lii1(x) are not independent since we
have

Li(x)+ Liyi(x) =1 (8.52)
The equation (8.49) can also be written as
X = Li(x)Xi+ Liy1(x)xi4 1 (8.53)

which shows that the mapping (8.49) is also an interpolation scheme that
gives the x coordinate of any point on the element (¢) when the correspond- -
ing L; and L;,, coordinates are known. The variation of (L;, L;;1) inside
the element () is shown in Figure 8.2(b). Using (8.52) and (8.53), we obtain

L; Xi Xiq1 |7V [ x 1 -1 Xip1 X
[L.-+1]=[1 1] [1]=f’m[ I -x, ] [1}
N;
‘-[Nm}

Thus we find that in the case of the linear piecewise approximate function
the local coordinates are also the shape functions.




